Search results for "Young’s modulus"

showing 7 items of 7 documents

Reinforcement Efficiency of Cellulose Microfibers for the Tensile Stiffness and Strength of Rigid Low-Density Polyurethane Foams

2020

Rigid low-density closed-cell polyurethane (PU) foams are widely used in both thermal insulation and structural applications. The sustainability of PU foam production can be increased by using bio-based components and fillers that ensure both enhanced mechanical properties and higher renewable material content. Such bio-based foams were produced using polyols derived from rapeseed oil and microcrystalline cellulose (MCC) fibers as filler. The effect of MCC fiber loading of up to 10 wt % on the morphology, tensile stiffness, and strength of foams has been evaluated. For estimation of the mechanical reinforcement efficiency of foams, a model allowing for the partial alignment of filler fibers…

business.product_categoryMaterials scienceYoung's modulus02 engineering and technology010402 general chemistry01 natural scienceslcsh:TechnologyArticlesymbols.namesakechemistry.chemical_compoundmicrocrystalline cellulose fibersThermal insulationMicrofiberUltimate tensile strengthpolymer matrix compositesGeneral Materials ScienceFiberYoung’s modulusCelluloseComposite materiallcsh:MicroscopyPolyurethanelcsh:QC120-168.85lcsh:QH201-278.5business.industrylcsh:T021001 nanoscience & nanotechnologyrigid polyurethane foams0104 chemical sciencesMicrocrystalline cellulosechemistrytensile strengthlcsh:TA1-2040symbolslcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineering0210 nano-technologybusinesslcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971Materials
researchProduct

Towards modern understanding of the Achilles tendon properties in human movement research

2023

The Achilles tendon (AT) is the strongest tendon in humans, yet it often suffers from injury. The mechanical properties of the AT afford efficient movement, power amplification and power attenuation during locomotor tasks. The properties and the unique structure of the AT as a common tendon for three muscles have been studied frequently in humans using in vivo methods since 1990's. As a part of the celebration of 50 years history of the International Society of Biomechanics, this paper reviews the history of the AT research focusing on its mechanical properties in humans. The questions addressed are: What are the most important mechanical properties of the Achilles tendon, how are they stud…

TechnologySPECKLE-TRACKINGBiomedical EngineeringBiophysicsISOMETRIC PLANTARFLEXIONDIFFERENTIAL STRAIN PATTERNSLOAD-DISPLACEMENT PROPERTIESjänteetELASTIC PROPERTIESstressstiffnessEngineeringYoung 's modulusstrainjäykkyysOrthopedics and Sports MedicineTRICEPS SURAE APONEUROSISin vivo -menetelmäEngineering BiomedicalIN-VIVOrasitusfyysiset ominaisuudetScience & TechnologyQUANTITATIVE ASSESSMENTRehabilitationyoung’s modulusHUMAN GASTROCNEMIUS-MUSCLEMECHANICAL-PROPERTIEShysteresiskantajännebiomekaniikkaLife Sciences & Biomedicine
researchProduct

Layer-dependent mechanical properties and enhanced plasticity in the van der Waals chromium trihalide magnets

2020

The mechanical properties of magnetic materials are instrumental for the development of the magnetoelastic theory and the optimization of strain-modulated magnetic devices. In particular, two-dimensional (2D) magnets hold promise to enlarge these concepts into the realm of low-dimensional physics and ultrathin devices. However, no experimental study on the intrinsic mechanical properties of the archetypal 2D magnet family of the chromium trihalides has thus far been performed. Here, we report the room temperature layer-dependent mechanical properties of atomically thin CrI3 and CrCl3, finding that bilayers of CrI3 and CrCl3 have Young's moduli of 62.1 GPa and 43.4 GPa, with the highest sust…

Letter2D magnetic materialsnanoindentationchemistry.chemical_elementFOS: Physical sciencesBioengineeringYoung's modulus02 engineering and technologyApplied Physics (physics.app-ph)mechanical propertiesPlasticityChromiumsymbols.namesakeGeneral Materials ScienceYoung’s modulusstrain tunabilityCondensed Matter - Materials ScienceCondensed matter physicsMechanical EngineeringTrihalideMaterials Science (cond-mat.mtrl-sci)MagnetostrictionPhysics - Applied PhysicsGeneral ChemistryNanoindentation021001 nanoscience & nanotechnologyCondensed Matter Physicscond-mat.mtrl-sci3. Good healthchemistryplasticityMagnetsymbolsvan der Waals forcephysics.app-ph0210 nano-technology
researchProduct

Determination of Young’s modulus of Sb2S3 nanowires by in situ resonance and bending methods

2016

In this study we address the mechanical properties of Sb2S3 nanowires and determine their Young’s modulus using in situ electric-field-induced mechanical resonance and static bending tests on individual Sb2S3 nanowires with cross-sectional areas ranging from 1.1·104 nm2 to 7.8·104 nm2. Mutually orthogonal resonances are observed and their origin explained by asymmetric cross section of nanowires. The results obtained from the two methods are consistent and show that nanowires exhibit Young’s moduli comparable to the value for macroscopic material. An increasing trend of measured values of Young’s modulus is observed for smaller thickness samples.

General Physics and AstronomyModulusYoung's modulusMechanical properties02 engineering and technologyBendingmechanical propertieslcsh:Chemical technology01 natural scienceslcsh:TechnologyFull Research Paperlaw.inventionIn situlawNanotechnologyGeneral Materials Sciencelcsh:TP1-1185Young’s modulusComposite materiallcsh:Science010302 applied physicsOptical properties021001 nanoscience & nanotechnologylcsh:QC1-999NanosciencenanowiressymbolsChemically deposited Sb2S3Strength0210 nano-technologyMaterials scienceThin filmsCellsNanowireCarbon nanotubesNanotechnologyCarbon nanotubeCrystalssymbols.namesakeCross section (physics)Antimony sulfide0103 physical sciencesSb2S3Mechanical resonanceElectrical and Electronic EngineeringArrayslcsh:TNanowiresin situResonanceantimony sulfidelcsh:Qlcsh:Physics
researchProduct

Local mechanical properties by Atomic Force Microscopy nanoindentations

2008

The analysis of mechanical properties on a nanometer scale is a useful tool for combining information concerning texture organization obtained by microscopy with the properties of individual components- Moreover, this technique promotes the understanding of the hierarchical arrangement in complex natural materials as well in the case of simpler morphologies arising from industrial processes. Atomic Force Microscopy, AFM, can bridge morphological information, obtained with outstanding resolution, to local mechanical properties. When performing an AFM nanoindentation, the rough force curve, i.e., the plot of the voltage output from the photodiode vs. the voltage applied to the piezo-scanner, …

soft materials polymers elastic Young’s modulus nanoscale mapping mechanical propertiesMaterials scienceatomic force microscopynanoindentationIndentationMicroscopyModulusTexture (crystalline)NanoindentationComposite materialPenetration depthElastic modulusViscoelasticity
researchProduct

Size Distribution, Mechanical and Electrical Properties of CuO Nanowires Grown by Modified Thermal Oxidation Methods

2020

Size distribution, Young&rsquo

Thermal oxidationYield (engineering)Materials sciencesynthesisthermal oxidationGeneral Chemical EngineeringNanowireResonanceYoung's modulusArticlelcsh:ChemistryCuONEMSsymbols.namesakelcsh:QD1-999Electrical resistivity and conductivityElectric fieldnanowiresymbolsGeneral Materials ScienceYoung’s modulusComposite materialOrder of magnitudeelectrical resistivityNanomaterials
researchProduct

Simulation of Young’s moduli for hexagonal ZnO [0 0 0 1]-oriented nanowires: first principles and molecular mechanical calculations

2017

The authors thank A Gulans, B Polyakov and S Vlassov for stimulating discussions. This study has been supported by the ERA.Net RUS Plus project No. 237 Watersplit. AB, RE and SL acknowledge the financial support by the Russian Foundation for Basic Research (Grant No. 17-03-00130-a) and the assistance of the Saint Petersburg State University Computer Center in the accomplishment of high-performance computations.

Materials sciencePolymers and PlasticsComputationAb initioNanowireModuluschemistry.chemical_elementNanotechnology02 engineering and technologyZinc010402 general chemistry01 natural sciencesQuantum chemistryBiomaterials:NATURAL SCIENCES:Physics [Research Subject Categories]ab initio hybrid PBE0 calculations (CRYSTAL code)force field calculations using pairwise potentials (GULP code)Condensed matter physicsMetals and Alloysnanowire Young’s modulus YNW and its dependence on diameter dNWwurtzite-structured ZnO (bulk and nanowires)021001 nanoscience & nanotechnologyCompression (physics)Piezoelectricity0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry0210 nano-technologyMaterials Research Express
researchProduct